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Circuital characterisation of space-
charge motion with a time-varying 
applied bias
Chul Kim1,3,*, Eun-Yi Moon2,*, Jungho Hwang1 & Hiki Hong3

Understanding the behaviour of space-charge between two electrodes is important for a number 
of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; 
however, fundamental questions of the microscopic nature of the space-charge remain, including the 
meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic 
details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to 
give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe 
two approaches to this problem, both of which are based on energy conservation: the energy-to-
current transformation rule, and an energy-equivalence-based definition of capacitance. We identify 
a significant capacitive current due to the rate of change of the capacitance. Further analysis shows 
that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional 
electric-field-based current is identified to describe the resulting motion of the space-charge. Our 
results and approach provide a facile platform for a comprehensive understanding of the behaviour of 
space-charge between electrodes.

An external current may be induced by the motion of space-charge between two electrodes. The 
Shockley-Ramo theorem1,2 is widely acknowledged to provide a basic description of the external current. 
This theorem describes the current induced by a moving point space-charge between electrodes. It has 
a wide range of applications, including biological ion channels3–5, solid-state devices6–8, electrochemis-
try9,10, electrical discharge11,12, and semiconductor detectors13–15. The Shockley-Ramo theorem is useful 
for understanding the behaviour of point space-charges. For example, when this theorem is applied 
to calculate the gating current of an ion channel, it relates the microscopic motion of the ions to the 
macroscopic current recorded using a voltage clamp3. The Shockley-Ramo theorem does not, however, 
provide circuital information on the induced current. Although the motion of space-charge has aspects 
of resistance and capacitance, it provides only one combined current.

An equivalent circuit approach to understanding the space-charge behaviour may be more useful for 
investigation of dielectric barrier discharge16–18. Equivalent circuit models have been employed in nanop-
ore sequencing19–21 and nano-scale devices22–24. Such circuital studies predetermine the overall equivalent 
circuit, and the circuit components are typically evaluated experimentally. The resulting capacitance can 
be fixed20,21 or time-varying16–19; however, the physical relationship between the space-charge and equiv-
alent capacitance is not well understood. Nanopore studies have posed some basic and general questions, 
including the meaning of capacitance, and its evolution into the corresponding bulk properties25.

Here we study the microscopic motion of discrete charges in circuital terms, and attempt to charac-
terise the evolution thereof into macroscopic circuit components. One restriction in the derivation of 
the Shockley-Ramo theorem is the fixed applied voltage between the electrodes1,2. With our analysis, 
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however, we consider a time-varying applied voltage for a simple system composed of only positive 
electrode-charge and positive space-charge. Our framework is based on conservation of the electro-
static potential energy of the system. This leads to two approaches: the energy-to-current transformation 
rule and the energy-equivalence-based definition of capacitance. Results obtained using this theoreti-
cal framework are validated via a comparison between experimental and numerical analyses of an air 
corona discharge with a time-varying applied voltage; i.e., a sinusoidally varying bias with a DC offset. 
Additional analyses are carried out to compare our results with those of the Shockley-Ramo theorem 
and the electric current that results from applying the Ampère-Maxwell equation. In particular, the time 
dependence of the capacitance due to space-charge is examined in detail.

Results
Framework. The proposed system consists of two electrodes separated by space, as shown in Fig. 1a. 
A positive electrode (the emitter) is connected to the positive terminal of a power supply, and the nega-
tive electrode (the collector) is grounded. The applied bias between the electrodes is Va and the external 
current is I. The collector is set as a reference for the electric potential, so that the potential of the col-
lector is zero and that of the emitter is Va. The system consists of a positive electrode-charge QL and a 
positive space-charge Q. The electrostatic potential energy due to QL can be expressed as KL =  1/2QLVa, 
and the electrostatic potential energy due to Q is given by ∫ υ= /

υ
K qVd1 2Q , where υ is the volume 

between the electrodes, q is the charge density, and V is the electric potential with respect to the refer-
ence26. The quantity KQ can be transformed in terms of the electric field using integration by parts after 
applying Gauss’s law, and assuming that a constant permittivity ε26; i.e.,

∫ ∫ε υ ε= + ⋅ ( )υ
K E d V dE s1

2
1
2 1Q

Se
a

2

where E2 =  E · E, E( =  − ∇ V) is the electric field, Se is the surface of the emitter, and s is the vector area 
(see Fig.  1a). The above relation can be written as KQ =  KEE +  KVE, where  ∫ε υ= /

υ
K E d1 2EE

2  and 

Figure 1. Schematic diagram of the two-electrode system and corresponding circuit diagrams. (a) The 
two-electrode configuration, where QL is charge on the electrode, ∫ υ(= )υQ qd  is the total space-charge, υ is 
the volume enclosed by dotted line, CL is the capacitance between emitter and collector, CQ is the equivalent 
capacitance of the charge Q, RQ is the equivalent resistance of the charge Q, CΔQ is the equivalent 
capacitance of Δ Q, RΔQ is the equivalent resistance of Δ Q, VΔQ is the local electric potential imposed on 
Δ Q, s and s′ are vector areas, and E↓  is the downward electric field. The downward field causes space-
charge to drift downwards, as shown by the red downward arrows (↓ ). (b) A schematic diagram of the energy 
interactions. The rectangle shows the boundary of the system. (c) The equivalent electric circuit with charge-based 
current continuity. (d) The equivalent electric circuit with electric-field-based current continuity.
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∫ε= / ⋅K V dE s1 2VE Se a . We use the symbol K to represent the charge-based electrostatic potential 
energy; i.e., KL and KQ, and we represent the electric-field-based electrical energy as KEE and KVE.

Figure  1b shows the total energy of the system. We use the same assumption as that used in the 
Shockley-Ramo theorem; i.e., that magnetic effects are negligible in the quasistatic regime1,2. The total 
electrical energy KM in the system is then the sum of KL and KQ (i.e., KM =  KL +  KQ). Consider the case 
whereby the power supply provides the system with an electric power P(= IVa) and there is no energy 
interaction with the space medium. Using conservation of energy, this input power will increase KM to 
satisfy the relation = / = P dK dt KM M. Therefore, if we know K M, the external circuit current can be 
expressed as = /I K VM a. Based on this rationale, here we implement a streamlined energy-to-current 
transformation rule such that KX (the electrical energy) →  K X(= dKX/dt, the equivalent circuit power) 
→  IX(= /K VX a, the equivalent circuit current), where the subscript X represents a specific characteristic. 
Using this rule, we can conveniently transform the foregoing electrical energies to equivalent circuit 
currents for a given applied voltage such that KL →  K L →  IL, KQ →  KQ →  IQ, KEE →  K EE →  IEE, and 
KVE →  KVE →  IVE. In the same manner, energy relations are readily transformed to current relations 
such that KQ =  KEE +  KVE →  = +  K K KQ EE VE →  IQ =  IEE +  IVE and KM =  KL +  KQ →  = +  K K KM L Q 
→  IM =  IL +  IQ.

The capacitance between the two electrodes is usually defined as QL =  CLVa, where CL is the capaci-
tance of the electrodes (see Fig. 1a), and is the constant of proportionality between QL and Va

26. Here CL 
is dependent only on the geometry of the system and the permittivity; CL =  ε(A/dg) for a pair of parallel 
electrodes, where A is the area of the electrodes and dg is the separation between them. Here we assume 
that the electrodes are perfect electric conductors, so that the electric field inside the conductor is zero26 
and the electric potential of the electrode is equal to the applied bias. In addition, no external field can 
penetrate the conductor and the net induced charge is zero26. It follows that the electric field generated by 
the space-charge should not change the charge on the electrode QL, and that CL is constant, even in the 
presence of space-charge. We define the capacitance using the following energy equivalence relation26:

= ( )K C V1
2 2L L a

2

If we apply KL =  1/2QLVa, the above expression reduces to QL =  CLVa; however, equation (2) is of 
interest because our analysis is based on conservation of energy. For example, the capacitance due to the 
total space-charge (i.e., CQ in Fig. 1a) is defined by = /K C V1 2Q Q a

2. Furthermore, this method can be 
extended to the electrical energy which does not include charge. The capacitance of the electrical energy 
stored in the electric field can be defined from = /K C V1 2EE EE a

2 22. Note that the above two definitions 
of capacitance result in different currents when the system is time varying. This will be discussed in 
greater detail later.

Discrete circuit components and evolution. As shown in Fig.  1a, a discrete positive charge Δ Q 
drifting between the two electrodes is assumed to have a discrete resistance RΔQ. As Δ Q drifts due to 
the Coulomb force FΔQ(= Δ QE), it does resistive Ohmic work due to ion-neutral collisions, where the 
work rate is FΔQ · UΔQ

27. Here UΔQ(= μE) is the velocity of the discrete charge Δ Q and μ is the electri-
cal mobility. In this way, the electrical energy of the system is converted into the thermal energy in the 
space between the electrodes27. The notation K X can be used to describe the Ohmic work done by the 
charge Δ Q because this energy dissipation process consumes electrostatic potential energy. This micro-
scopic process can be described by the discrete energy dissipation rate Δ

K R, which satisfies the energy 
equivalence relation ⋅ = =Δ Δ Δ Δ

K I VF UQ Q R R a, where IΔR is the equivalent discrete circuit current of 
RΔQ. From this relation and using Ohm’s law (i.e., Va =  IΔRRΔQ), we find that the discrete circuit resist-
ance RΔQ is given by

=
⋅

.
( )

Δ
Δ Δ

R
V

F U 3
Q

a

Q Q

2

The total Ohmic work rate K R( ∫ υ= ⋅
υ

dF U , F =  qE, U =  μE)27 in the space between the electrodes 
and the corresponding circuit resistance RQ (see Fig. 1a) should satisfy the power relation =K I VR R a as 
well as Ohm’s law Va =  IRRQ, where IR is the equivalent circuit current of RQ. Using conservation of 
energy, the total K R (= / )V Ra Q

2  is the sum of each discrete Δ
K R (= / ΔV Ra Q

2 , see equation (3)), which 
leads to the relation / = ∑ / ΔR R1 1Q Q. Therefore, all of the discrete resistances can be said to evolve in 
parallel into the equivalent circuit resistance.

Note that Δ Q is assumed to have a discrete capacitance CΔQ, as shown in Fig. 1a. Because the charge 
Δ Q leads to a local electric potential VΔQ, the electrostatic potential energy due to Δ Q can be expressed 
as KΔQ =  1/2Δ QVΔQ. From equation (2), we may write = /Δ ΔK C V1 2Q Q a

2 to define CΔQ as the equiv-
alent discrete circuit capacitance due to Δ Q. From those two expressions, we may write CΔQ as follows:
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Δ
ΔC

QV

V 4Q
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From conservation of energy, the total energy (= / )K C V1 2Q Q a
2  is the sum of each discrete term 

(= / )Δ ΔK C V1 2Q Q a
2 , which leads to = ∑ ΔC CQ Q. Hence, all of the discrete capacitances can also be said 

to evolve into the equivalent circuit capacitance in a parallel topology.

Development of the charge-based circuit. The overall instantaneous application of conservation 
of energy for the system leads to − = V I K Ka R M, where VaI is the input power from the power supply, 
K R is the power loss from the system to the space medium, and (= + )  K K KM L Q  is the rate of change 
of the total electrostatic potential energy inside the system. This in turn leads to 
= / + / + /  I K V K V K VL a Q a R a, after dividing both sides by Va, and we arrive at the following 

charge-based current continuity equation:

= + + , ( )I I I I 5L Q R

where IL and IQ are the capacitive contributions to the currents, which come from the non-dissipative 
electrostatic potential energies, whereas IR is a resistive current. Therefore, the above charge-based cur-
rent continuity relation can be represented as a parallel circuit composed of two capacitors CL and CQ, 
and one resistor RQ, as shown in Fig. 1c.

Transformation to an electric-field-based circuit. The currents IL and IQ are transformed from KL 
and KQ, respectively. To understand the current continuity in terms of the electric field, KL and KQ should 
be transformed from the charge-based electrostatic potential energies to the electric-field-based currents. 
As we have already shown, KQ is transformed using the current relation IQ =  IEE +  IVE. In addition, KL 
can be transformed into the electric field energy. If we assume the surface of the emitter is a Gaussian 
surface, Gauss’s law for the emitter charge QL can be written as ∫Se ELp . ds′ ε= /QL  when there is no 
space-charge; here ELp is the Laplacian electric field and s′ is the vector area (s′ =  −  s, see Fig. 1a). This 
relation however applies even in the presence of space-charge, since QL is not influenced by the 
space-charge, as discussed previously. By substituting the expression ∫ε ′= ⋅Q dE sL Se Lp  into 
KL =  1/2QLVa, we obtain ( )∫ε ′= ′ = / ⋅K K V dE s1 2L VE Se a Lp , as well as = ′I IL VE by employing the 
transformation rule. By inserting IQ =  IEE +  IVE and = ′I IL VE into equation (5), we obtain 
= ′ + + +I I I I IVE EE VE R. Consequently, if ′I VE and IVE are combined into an equivalent current 
(= + ′ )I I IS VE VE , we arrive at the following electric-field-based current continuity:

= + + , ( )I I I I 6EE S R

where IS given by

∫ ( )ε=


 − ⋅



. ( )

I
V

d
dt

V dE E s1 1
2 7S

a Se
a Lp

The term IEE in equation (6) is the non-dissipative volumetric current, and includes a volume integral 
(see KEE in equation (1)), whereas IS in equation (7) is a non-dissipative surficial current which includes 
the surface integral. The volumetric current IEE and surficial current IS are geometrically independent. 
Hence, the above electric-field-based current continuity relation can be represented as a parallel circuit 
composed of two capacitors CEE and CS, and one resistor RQ, as shown in Fig. 1d.

Validation. An experimental setup consisting of an axisymmetric wire-to-cylinder positive air corona 
discharge28 was used to validate the theoretical framework described here, as shown in Fig.  2a (see 
Methods for details of the experiment). If a positive voltage applied to the emitter exceeds the corona 
discharge initiation voltage, a positive charge (i.e., a collection of positive ions) will be generated in 
a thin plasma sheath around the emitter28,29 (shown by the dotted circle in Fig.  2a), and that charge 
will drift toward the collector due to the Coulomb force28,29. Here we assume that the applied bias is 
described by a sinusoidal waveform with a DC offset, as shown in the leftmost two waveforms in Fig. 2b, 
i.e., Va =  Vm +  Vo sin (2πf)t, where Vm is the mean voltage (i.e., DC offset), Vo is the amplitude of the 
time-varying component, f is the frequency of the time varying component (so that T =  1/f is the period), 
and t is time. The purpose of this waveform is to enable time-varying motion of the space-charge.

First, we attempt to reproduce the parallel topology discussed above. The terms CL and CQ (see Fig. 1c) 
result from KL (due to the electrodes) and KQ (due to the space-charge), whereas CEE and CS (see Fig. 1d) 
result from KEE (for the volume) and KS (for the surface). The summation of these geometrically sepa-
rated energies corresponds to the parallel connection of two capacitors. However, concerning the 
space-charge, it is not clear whether the drift of the point charge Δ Q (see Fig.  1a) corresponds to a 
parallel or series connection of CΔQ and RΔQ. In this respect, it is helpful to experimentally confirm the 
parallel connection between RQ and the two capacitances. With periodic conditions, the mean circuit 
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current ( )∫= −I T Idtmean
T1

0
 of the proposed parallel circuit should always be equal to the mean resistor 

current for a given Vm because the mean of the capacitor current is zero regardless of frequency. For 
Vm =  9 kV, as shown in Fig. 3a, the experimental result reveals that the Va-I loop contracted to the line 
A as the frequency decreased from 20 kHz to 1 kHz. Consequently, Imean for each axisymmetric current 
loop exactly coincides with one centred point for all frequencies, which corresponds to a parallel circuit 
topology. Figure 3b provides further support of this when Vm and Vo are varied. The solid line in Fig. 3b 
shows the DC current-voltage curve, which is the same as the Vm-Imean curve for f =  0 kHz. For f =  20 kHz 
and Vo =  1.0 kV, the centred point coincides exactly with the Vm-Imean curve at the three points of Vm, 
and with f =  100 kHz and Vo =  0.1 kV, the centred point coincides exactly with the Vm-Imean curve at the 
five points of Vm.

To quantitatively understand the theoretical framework described above, the Poisson and charge con-
servation equations were solved for the experimental setup to obtain the time-varying equivalent cur-
rents and circuit components (see Methods for details of the simulation). Note that the electrode current 
IL was calculated from = /K C V1 2L L a

2 using the theoretical value of CL (0.825 pF, see Fig. 2a). Figure 4a 
shows various current-voltage loops for f =  20 kHz, which are plotted for the fully periodic state. In the 
lower part of the figure, the loop IQ coincides with the loop IEE +  IVE, whereas the loop IL coincides with 
the loop ′I VE. This supports the relations IQ =  IEE +  IVE and = ′I IL VE, which are pivotal in the 
charge-to-field transformation. In addition, the surficial current IS is revealed to be a considerable loop. 
The complete coincidence of the loop I (i.e., the sum of IL, IQ and IR) and the loop It (the sum of IEE, IS 
and IR) supports the equivalence of charge-based and electric-field-based approaches.

Figure 4b shows a comparison between the measured circuit current I and the simulated current for 
the case shown in Fig.  4a. Although the two loops are in very good agreement, both in terms of the 
overall shape and the instantaneous data, a small discrepancy was observed at the top. The experimen-
tally measured loop was somewhat distorted, compared with the simulated data, which is attributed to 
the incomplete sine wave generated by the power supply, and the measured capacitance CL =  0.89 pF was 
found to provide better agreement. As shown in Fig. 4c, similar agreement was achieved with f =  100 kHz, 
which supports our theoretical result; i.e., the two equivalent circuits shown in Fig. 1.

Comparison with the Shockley-Ramo theorem. This theorem expresses the circuit current 
induced by the point space-charge Δ Q as Δ QUΔQ · ELp for an applied bias of 1 V, which leads to the 
relation ∫ υ= ⋅υ

−I V q dU ESR a Lp
1  30 for the total space-charge. When we plot ISR, as shown in Fig. 4b,c 

the results were in poor agreement with the experimentally measured current for both cases. It has been 
reported1,13,31 that the electrode current IL should be added to ISR to provide the correct external circuit 
current, since ISR is obtained with a fixed Va. This appears reasonable for a time-varying Va; however, as 
shown in Fig. 4b,c, IL +  ISR did not provide good agreement with the experimentally measured current. 
Figure 2c shows the transition of the current from the time-varying applied bias to the steady-state. The 

Figure 2. Experimental setup and simulated currents. (a) A schematic diagram showing the wire-to-
cylinder positive air corona discharge. The outer radius of the emitter was re =  0.02 mm, the inner radius of 
the collector was rc =  17 mm, and the length (perpendicular depth of cross-section) was l =  100 mm. The 
theoretical value of CL is given by πε / ( / ) = .l r r2 ln 0 825 pFc e , where ε is the permittivity of free space and 
RS is the shunt resistance. The eight radial arrows show the axisymmetric drift of annular discrete charge 
Δ Qr at radius r. Vr is the electric potential at r and qr is the charge density at r. The dotted circle shows the 
boundary of the plasma sheath with the radius rp ≈  3re(see Methods). (b) The waveform of applied voltage 
used for experiments and simulation (the left half shows t ≤  2T), where Vm =  9 kV, Vo =  0.53 kV, f =  20 kHz 
and T =  50 μ s. (c) Transition of the simulated currents from time-varying to the steady-state. The current I is 
shown in blue, ISR in green, and IL =  0 is shown by the symbol ↓ . The left-hand side corresponds to the loop 
Va-I (see Fig. 4a).
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current I merged with ISR as Va became constant, and finally coincided with IR in the steady state as IQ 
became zero. This result suggests that ISR does not predict the circuit current for the motion of space-charge 
when the applied voltage varies with time.

Comparison with spatial electric currents. The currents shown in the charge-based and 
electric-field-based current continuities are the equivalent circuit currents, rather than actual currents 
that flow in the space between two electrodes. Here we compare the equivalent circuit currents with the 
spatial current density J that appears in Ampère-Maxwell equation26, i.e., ∇  ×  H =  J, where H is the 
magnetic field, and J =  Jf +  Jd, where Jf ( =  qU) is the conduction current density of free charge and Jd 
( =  ε∂E/∂t) is the displacement current density. To understand how J relates to the circuit current, we 
attempt to visualise the spatial Jf and Jd at a moment, which corresponds to the symbols ▲, • and ■ 
shown in Fig. 4a. Figure 4d shows the radial distributions of the free charge current If ( ∫= ⋅dJ s

Sr f , where 

Sr is surface at radius r; see Fig. 2a,) and displacement current ( )∫= ⋅I dJ sd Sr d . The ripples that appear 
in If and Id are due to fluctuations in the applied voltage. Although the shape of Ifd ( =  If  +  Id) appears to 
be flat with low ripples because the fluctuations of If and Id cancel, those ripples exhibit a wave pattern, 
as shown by the magnified plot in Fig. 4e. Let I fd be the volume average of Ifd; although, we find agree-
ment between I fd (0.281 mA) and IR +  IEE (0.282 mA), this does not imply an exact equivalence of I fd and 
IR +  IEE, and rather suggests that the J is linked to the volumetric terms IR +  IEE. Subsequently, the agree-
ment between I (0.319 mA) and +I Ifd S (0.318 mA, where IS =  0.037 mA) supports our theoretical iden-
tification of surficial current IS. Figure 4a shows further overall agreement between I fd and IR +  IEE for 
the entire loop.

The numerically demonstrated link between the spatially averaged I fd and the volumetric IR +  IEE is 
supported theoretically. The term K R can be re-written as ∫ υ⋅

υ
q dE U , whereas KEE in equation (1) is 

differentiated to give ∫ ε υ= ⋅ (∂ /∂ )
υ

K t dE EEE . Consequently, + K KR EE leads to 
( )∫ υ( + ) = ⋅ +

υ
V I I dE J Ja R EE f d . If we resort to the definition of work rate E · Jf

26, which is done by 
the moving charge, the above relation suggests that Jf is linked to IR and Jd is linked to IEE.

Evaluation of circuit components. There are five circuit components: CL, CQ, RQ, CEE and CS in the 
two proposed circuits. With the exception of CL, the other four components can be calculated from the 
acquired V and q fields. The resistance RQ can be calculated using equation (3), whereas three capaci-
tances are calculated using equation (2); we arrive at the following expressions: ∫ υ= / ⋅υR V dF UQ a

2 , 
∫ υ=
υ

−C V qVdQ a
2 , ∫ε υ=

υ
−C V E dEE a

2 2  and ( )∫ε= −−C V V dE E sS a Se a Lp
2 . With the same 

conditions as the data shown in Fig. 4a, the four components are plotted in Fig. 5a–d. Interestingly, RQ 

Figure 3. Experimental validation of the parallel circuit topology. (a) Va-I loops for frequencies of 
20 kHz (□ ), 10 kHz (◇) 5 kHz (△ ) and 1 kHz (○). The coincidences of Imean(•) were as follows: 0.206 mA 
for 0.2 kHz, 0.207 mA for 0.5 kHz, 0.206 mA for 1 kHz, 0.204 mA for 2 kHz, 0.207 mA for 5 kHz, 0.204 mA 
for 10 kHz and 0.204 mA for 20 kHz, average: 0.2054 mA, standard deviation: 0.0013 mA. The 2-kHz loop is 
plotted between 1- and 5-kHz loops (not shown). The 0.2-kHz and 0.5-kHz loops were almost identical to 
line A. (b) The experimental DC current-voltage curve reveals typical wire-to-cylinder corona discharge, and 
can be fitted with I =  0.00405 Va(Va −  Vci), where Vci =  3.4 kV is the corona discharge initiation voltage28. 
Data for f =  20 kHz and Vo =  1.0 kV are shown by the ‘○’ symbols and data for f =  100 kHz and Vo =  0.1 kV 
by the ‘▲’ symbols. Difference between DC data and 8 symbols; average: 0.00042 mA, standard deviation: 
0.0012 mA.
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was not fixed. This quantity forms a pinched loop that relates to the time-varying characteristics of the 
circuit in a similar manner to a memristor Rm

32, and is identical to RQ from the definition of Va =  IRRm. 
The three capacitances CQ, CEE and CS lead to three elliptical loops that describe the time-varying char-
acteristics of the system. All of the capacitances, including CL, are compared in Fig. 5e. The two parallel 
charge-based and electric-field-based circuits shown in Fig. 1 are equivalent, so that CL +  CQ should be 
equal to CEE +  CS. The data plotted in Fig. 5e reveal a complete coincidence between CL +  CQ and CEE +  CS. 
The data plotted in Fig. 5e show that this is indeed the case. This agreement confirms the effectiveness 
of the proposed method to define the capacitance, which can be extended to the electric field energy.

Capacitive current and time-varying capacitance. We examine the current flowing in the 
time-varying capacitance CQ, as shown in Fig.  5b. The time-varying capacitance (which is similar to a 
memcapacitor19,32,33) is defined as Q =  CQVa, where the capacitor current IQA is defined by applying the 
product rule for differentiation to IQA =  dQ/dt =  d(CQVa)/dt32; i.e.,

= + . ( )I V
dC
dt

C
dV
dt 8QA a

Q
Q

a

The capacitor current IQB, which results from the energy equivalence of = /K C V1 2Q Q a
2, can be 

expressed by applying the product rule to = = ( / )/V I K d C V dt1 2a QB Q Q a
2 ; i.e.,

= + , ( )I V
dC
dt

C
dV
dt

1
2 9QB a

Q
Q

a

where IQA and IQB reveal an apparent difference in the first term, which reflects the effects of the unsteady 
capacitance; i.e., Va(dCQ/dt) for IQA, and 1/2Va(dCQ/dt) for IQB. It should be noted, however, that both IQA 

Figure 4. Validation of the theoretical work. (a) Simulated Va-I loops for f =  20 kHz, Vm =  9.0 kV and 
Vo =  0.53 kV. The components of the current I, IR, IR +  IEE, IL and IQ are shown in blue, and It, I fd, I′ VE, 
IEE +  IVE and IS are shown in red. The coincidences between I and It, IR +  IEE and I fd, IL and ′I VE, IQ and 
IEE +  IVE were so good that the differences cannot be distinguished. ▲: I(0.319 mA), •: IR +  IEE (0.282 mA),  
■: IS(0.037 mA). (b) Circuit current comparison between experiment (○) and simulation (shown by the blue 
inner loop) for the same conditions as Fig. 4a. The measured capacitance (CL =  0.89 pF) is shown by the red 
outer loop. The current ISR is shown by the solid green curve, and IL +  ISR is shown by the dashed green 
curve. (c) Additional comparison between experiment (○) and simulation for f =  100 kHz, Vm =  7.0 kV and 
Vo =  0.05 kV. The current ISR is shown by the solid green curve, and IL +  ISR is shown by the dashed green 
curve. (d) Instantaneous profiles of If and Id plotted with as a function of the radius for re ≤  r ≤  rc. (e) A 
magnified profile of Ifd shown in (d).
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and IQB reduce to the usual capacitor current relation of IQ =  CQ(dVa/dt) when CQ is constant. Figure 6a 
shows a comparison between IQA and IQB for f =  20 kHz. The exact coincidence of IQB with IQ, which is 
calculated from ∫ υ= / υK qVd1 2Q , suggests that equation (9) is more plausible than equation (8) to 
describe the time-varying capacitance.

Figure 5e shows that the electrode capacitance CL is approximately one third of CQ. It follows that IL 
should be one third of IQ, according to the usual capacitor current relation; however, the IQ and IL loops 
plotted in Fig. 4a have approximately same magnitude at the point Va ≈  9 kV. This apparent contradiction 
can be resolved by considering the effect of the time-varying capacitance. In Fig.  6b, the quantity IQB 
that is plotted in Fig. 6a is decomposed into that due to the time-varying capacitance, which is denoted 
IQB1 ( =  1/2Va(dCQ/dt)), and that due to the steady-state capacitance, denoted IQB2 ( =  CQ(dVa/dt)), where 
IQB =  IQB1 +  IQB2. With Va ≈  9 kV, the relatively large value of IQB2 (0.165 mA) was counterbalanced by the 
negative value of IQB1 (− 0.113 mA) to create a relatively small value of IQB (0.053 mA). This counter-
balancing effect of the time-varying capacitance is sufficiently large (IQB1/IQB2 =  − 0.68 ≈  − 2/3) to allow 
IQB to be one third of the usual capacitor current IQB2. With f =  100 kHz, as shown in Fig. 6c, a similar 
counterbalancing effect was observed at the point Va ≈  7 kV; i.e., IQB2 =  0.066 mA, IQB1 =  − 0.044 mA and 
IQB =  0.022 mA, so that we have IQB1/IQB2 =  − 0.67. As shown in Fig. 6d, the IQB2-IQB1 relations form ellipti-
cal loops, with a narrow outer loop for f =  20 kHz and a thin inner loop for f =  100 kHz. These two points 
correspond to the bottom-right corners of the two loops. The lower turning point shown in Fig. 6d cor-
responds to the arrow to the right (→ ) in Fig. 6b and the lower arrow (↘) of Fig. 5b. This tilted arrow 
corresponds to an increase in Va (dVa/dt >  0) and decrease in CQ (dCQ/dt <  0), which leads to a positive 
IQB2 and a negative IQB1 at the lower turning point of Fig.  6d. In the same manner, the upper turning 
point shown in Fig. 6d corresponds with the upper arrow (↖) of Fig. 5b. This tilted arrow corresponds 
to a decrease in Va (dVa/dt <  0) and an increase in CQ (dCQ/dt >  0), which gives a negative IQB2 and a 
positive IQB1 in the upper turning point of Fig. 6d.

The terms IQB2 and IQB1 exhibit a phase difference of 180° in the time domain (see Fig.  6b,c). This 
can be interpreted as follows: IQB1 behaves as an inductor current rather than the usual capacitor current 
IQB2. The overall linear relation between IQB1 and IQB2 shown in Fig. 6d is IQB1 ≈  − 0.7IQB2 at both 20 kHz 
and 100 kHz, where the –0.7 implies a significant counterbalancing effect of the rate of change of the 

Figure 5. Evaluation of time-varying circuit components at 20 kHz. (a) Va-RQ. (b) Va-CQ. The direction of 
the two arrows agrees with the time increment. (c) Va-CEE. (d) Va-CS. (e) All capacitances are compared. The 
CL +  CQ loop (blue) coincides with CEE +  CS loop (red) such that the difference is barely distinguishable.
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capacitance with the time-varying motion of the space-charge. This relation will hold only for the com-
pletely periodic case under the DC biased sinusoidal waveform of applied voltage adopted in this report.

Discussion
Our analysis is restricted to the electrostatic potential energy of positive space-charge; however, the 
approach can also be applied to negative space-charge. Considering the symmetry of positive and neg-
ative charges, the reference of electric potential for the negative space-charge should be changed from 
collector to emitter in Fig. 1a. In this case, the electric potential energy of the discrete negative charge 
− Δ Q located in the local electric potential VΔQ is expressed as the positive value of KΔQ =  1/2(− Δ Q)
(VΔQ −  Va).

Regarding the method used to define the capacitance, we reconsider the usual definition of QL =  CLVa 
for the application to space-charge. According to this definition, the capacitance due to space-charge Δ Q 
can be deduced from Δ = ∆ ∆

ˆQ C VQ Q, where ΔĈ Q is the local capacitance for the local VΔQ. The 
Δ = Δ Δ

ˆQ C VQ Q is identical to the proposed definition of = /Δ Δ Δ
ˆK C V1 2Q Q Q

2 if KΔQ =  1/2Δ QVΔQ; 
however, ΔĈ Q should be transformed to the circuit capacitance CΔQ, which is defined at the circuital Va. 
We employ the energy equivalence relation = / = /Δ Δ Δ Δ

ˆK C V C V1 2 1 2Q Q Q Q a
2 2 for this transforma-

tion. It follows that this transformation rule can be expressed as = ( / )Δ Δ Δ
ˆC C V VQ Q Q a

2, which supports 
our definition of the capacitance due to Δ Q in equation (4) when Δ = Δ Δ

ˆQ C VQ Q is applied. In other 
words, our proposed method to define the capacitance can be said to be the capacitance transformation 
from one voltage to another, without violating the conventional method.

The physical interpretation of the two charge-based and electric-field-based current continuities is 
discussed using three examples. For the time-varying case with no space-charge, the Ohmic current IR 
due to the drift of space-charge disappears, and the surficial current IS becomes zero from E =  ELp (see 
equation (7)). It follows that the electric-field-based current continuity reduces to I =  IEE, whereas 
charge-based continuity reduces to I =  IL, since both IQ and IR are zero. The following relation IL =  IEE can 
be transformed to a KL =  KEE relation, which implies a textbook example26; i.e., the electrostatic potential 
energy stored in the electrode capacitor is equal to the volumetric electric field energy between the elec-
trodes. In this case, the displacement current Id is equal to the circuit current I26. For the steady state case 
with space-charge, both current continuities result in I =  IR, which is an example of steady-state electrical 

Figure 6. Analysis of capacitive current due to space-charge. (a) Comparison between IQA and IQB for 
20 kHz (see Fig. 4a). The IQ loop (blue) coincides with the IQB loop (red) such that the difference is not 
clearly distinguishable. (b) The quantity IQB (△  symbol) plotted in Fig. 6a is decomposed into IQB1 (□  
symbol) and IQB2 (○ symbol). The directions of the three arrows agree with the time increment. (c) The 
IQB (△  symbol) is decomposed into IQB1 (□  symbol) and IQB2 (○ symbol) for f =  100 kHz (see Fig. 4c). (d) 
IQB1 and IQB2 relations; the outer loop (blue) corresponds to f =  20 kHz and the thin inner loop (red) to 
f =  100 kHz. The direction of the two arrows agrees with the time increment.
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discharge27,29,34. In this case, the motion of free charges, and the corresponding current If is equal to the 
circuit current I. With the time-varying case, however, as shown in Fig. 4a, the average spatial current 
I fd is lower than the circuit current by an amount IS. From the perspective of field theory, the surface 
integral KVE in equation (1) is considered to be negligible compared with the volume integral KEE, by 
assuming a very large enclosed volume26. It follows that all of the electric field energy can be considered 
to be stored only in the spatial electric field26. However, KVE was not neglected in the configuration dis-
cussed here because of the small enclosed volume. In this context, a so-called surficial current IS may be 
taken as an additional spatial current.

The circuital characteristics of the motion of the space-charge with a time-varying applied bias can 
be summarised as follows. The microscopic behaviour of the space-charge is decomposed to a discrete 
equivalent circuit resistance and a discrete equivalent circuit capacitance. These microscopic components 
evolve in parallel with the macroscopic equivalent circuit components to form a charge-based circuit, 
which can be equivalently transformed into an electric-field-based circuit. All of the circuit compo-
nents calculated using the space-charge and electric-potential fields vary with time, in accordance with 
the time-varying motion of the space-charge. With the configuration discussed here, 70% of the usual 
capacitive current was significantly counterbalanced by the current due to the rate of change of the 
capacitance. The two approaches were crucial for the theoretical framework described here: the trans-
formation rule, which was used to transform electrical energy into an equivalent circuit current, and the 
method to define the capacitance, which is based on energy equivalence. The Shockley-Ramo theorem 
was shown to be invalid when the applied voltage was time-varying. The electric-field-based current 
continuity description includes an additional electric current to describe the oscillatory motion of the 
space-charge. We expect that our results and approach will be helpful for understanding experimental 
results, the design of equivalent circuits, and further theoretical studies in relevant fields.

Methods
Experiment. Figure 2a shows a cross-section of the wire-to-cylinder air corona discharge configura-
tion with a central emitter formed of tungsten wire, with a diameter of 40 μ m, inside a circular collector, 
which was formed of stainless steel pipe, with an inner diameter of 34 mm. This experimental configu-
ration was used to approximate the one-dimensional electric potential and charge density distributions, 
by eliminating any edge effects. For the collector structure, five small cylindrical stainless steel tubes that 
were 100 mm long were assembled to form a long pipe, where for each pipe the neighbouring pipes were 
electrically insulated by a small air gap. The tungsten wire was placed under tension and carefully centred 
along the axis inside the pipes. The five collector pipes were then electrically connected in parallel, and a 
shunt resistance of RS =  10 kΩ  (see Fig. 2a) was connected to each pipe in series to measure the current. 
A preliminary experiment was carried out to evaluate the experimental electrode capacitance CL of each 
pipe without space-charge (i.e., with Va <  Vci, see Fig.  3b). When CL was calculated using Va,rms =  Irms/
(ωCL), where ω =  2πf and the subscript rms stands for root-mean-square, the central pipe exhibited the 
smallest capacitance (0.89 pF), which corresponds to the measured CL. The phase difference θ between Va 
and I was observed to change as the frequency was varied; we find θ =  84.2° for f =  20 kHz, and θ =  65.0° 
for f =  100 kHz, in contrast to the expected value of θ =  90°. Furthermore, the capacitance was observed 
to be independent of the frequency. Positive discharge exhibited a more stable current waveform than 
negative discharge. Mechanical vibration of the wire was minimised by fixing the wire with small pieces 
of dielectric (thin pieces of paper) inserted through the four gaps between neighbouring pairs of pipes. In 
the experiments, the current in the central pipe was measured for positive corona discharge with phase 
compensation of 5.8° for f =  20 kHz (see Fig. 4b) and 25.0° for f =  100 kHz (see Fig. 4c).

The waveform Va was generated using a high-voltage amplifier (10/40A, TREK) triggered by a func-
tion generator (WF1974, NF). Va was measured using a 1000:1 divider inside the 10/40A amplifier. The 
circuit current I was calculated using Ohm’s law from the measured voltage drop across the shunt resist-
ance Rs. The waveforms of Va and I were observed using a storage oscilloscope (6050A, LeCroy), and 
the stored data were processed to obtain the experimental data. The experiments were carried out with 
a temperature in the range 27.8-28.1 °C and a relative humidity in the range 51.0-52.2%.

Simulation. We solved the Poisson’s equation (i.e., ∇ 2V =  − q/ε) coupled with the charge conservation 
equation ∂q/∂t +  ∇  · Jf =  0 for the space between re and rc, corresponding to the experimental arrange-
ment. The Laplace equation ∇ 2V =  0 was also solved to obtain the electric field ELp, which is necessary 
to calculate IS and ISR. The term Jf in the charge conservation equation is given by Jf =  q(Uc +  U) − D∇ q, 
where Uc is the convective fluid velocity, U( =  μE) is the velocity of the charge (i.e., ion), μ is the mobility 
of the ion, and D is the diffusion coefficient29. The effects of Uc and diffusion were neglected (i.e., we 
assumed Uc =  0 and D =  0)29. We used a value of μ =  1.4 ×  10−4 m2V−1s−1 for the mobility of the positive 
ions35,36. The permittivity of free space was used for ε29.

We followed the simulation method that we have previously reported for steady-state simulations27,29,34. 
To achieve the precise time-varying simulation required for this study, we took advantage of the sym-
metry of the system, so that the equations could be solved in one dimension, which provides significant 
gains in terms of the computational expense. Vr and qr (see Fig. 2a) are functions of the radius and time. 
The grid structure was composed of one string of 236 cells with dense grids on the emitter side (start size: 
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2 μ m, growth rate: 1.05, maximum size: 100 μ m) to describe the large gradient of Vr and qr near the emit-
ter. The time-step was 0.2 ns, which maintains a maximum Courant number (charge velocity× iteration 
time/cell size) of Cr <  0.1 in the first cell above the surface of the emitter. Dirichlet boundary conditions 
were used for Vr at the emitter (Vr =  Va) and the collector (Vr =  0), and we imposed ∂qr/∂r =  0 at both 
electrodes. A “constant charge density” (qi) model was used to represent the charge generation process in 
the plasma region around the emitter with the assumption that the radius of the plasma sheath is given 
by rp ≈  3re

29 (see the dotted circle in Fig.  2a). As the first step in the qi decision process, we measured 
the DC current I for a given Va. The steady-state simulation subsequently followed to make the simu-
lated current (i.e., integration of Jf on the collector surface) coincide with the measured I by adjusting 
qi of the plasma region, and resulted in qi =  0.0191 Cm−3 for Vm =  9.0 kV case and qi =  0.0038 Cm−3 for 
Vm =  7.0 kV case. We used a Va waveform with a very small ratio Vo/Vm for the above plasma region 
model in the time-varying simulation, with a high frequency to increase the influence of capacitive 
currents IL and IQ, i.e., Vo/Vm =  0.059 (0.53 kV and 9.0 kV) at 20 kHz and Vo/Vm =  0.0071 (0.05 kV and 
7.0 kV) at 100 kHz.

From the simulated time-varying V and q fields, we calculated the components of the currents 
shown in Fig.  4a using Δ KX/Δ t/Va (where Δ t =  40 ns); υ(=∑ / ( Δ ) ) →K q V I1 2Q Q, 

ε υ(=∑ / Δ ) →K IE1 2EE EE
2 , ( )ε= / (− ) →K V Se IE1 2VE a Se A VE, (= / ) →K C V I1 2L L a L

2 , 

( )ε′ = / → ′K V Se IE1 2VE a Lp Se A VE, (= + ′ ) →K K K IS VE VE S and υ μ(=∑( Δ ) ⋅ ) →K q IE ER R, 
where Δ υ is the volume of each cell, and SeA is the area of the surface of the emitter. The circuit 
components shown in Fig.  5 were calculated using υ μ= /(∑( Δ ) ⋅ )R V q E EQ a

2 , 
υ= ∑( Δ ) /C q V VQ a

2, ε υ= ∑ Δ /C VEEE a
2 2 and ( )ε= ∑ − /C V Se VE EH a Lp Se Se A a

2.
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